Using a Sponge to Generate Steam


Bubble wrap, combined with a selective absorber, keeps heat from escaping the surface of the sponge. Credit: Massachusetts Institute of Technology

How do you boil water? Eschewing the traditional kettle and flame, MIT engineers have invented a bubble-wrapped, sponge-like device that soaks up natural sunlight and heats water to boiling temperatures, generating steam through its pores.

The design, which the researchers call a “solar vapor generator,” requires no expensive mirrors or lenses to concentrate the sunlight, but instead relies on a combination of relatively low-tech materials to capture ambient sunlight and concentrate it as heat. The heat is then directed toward the pores of the sponge, which draw water up and release it as steam.

From their experiments—including one in which they simply placed the solar sponge on the roof of MIT’s Building 3—the researchers found the structure heated water to its boiling temperature of 100 degrees Celsius, even on relatively cool, overcast days. The sponge also converted 20 percent of the incoming sunlight to steam.

The low-tech design may provide inexpensive alternatives for applications ranging from desalination and residential water heating, to wastewater treatment and medical tool sterilization.

The team has published its results today in the journal Nature Energy…

… In their new design, the researchers settled on a spectrally-selective absorber—a thin, blue, metallic-like film that is commonly used in solar water heaters and possesses unique absorptive properties. The material absorbs radiation in the visible range of the electromagnetic spectrum, but it does not radiate in the infrared range, meaning that it both absorbs sunlight and traps heat, minimizing heat loss.

The researchers obtained a thin sheet of copper, chosen for its heat-conducting abilities and coated with the spectrally-selective absorber. They then mounted the structure on a thermally-insulating piece of floating foam. However, they found that even though the structure did not radiate much heat back out to the environment, heat was still escaping through convection, in which moving air molecules such as wind would naturally cool the surface.

A solution to this problem came from an unlikely source: Chen’s 16-year-old daughter, who at the time was working on a science fair project in which she constructed a makeshift greenhouse from simple materials, including bubble wrap.

“She was able to heat it to 160 degrees Fahrenheit, in winter!” Chen says. “It was very effective.”
Chen proposed the packing material to Ni, as a cost-effective way to prevent heat loss by convection. This approach would let sunlight in through the material’s transparent wrapping, while trapping air in its insulating bubbles.

“I was very skeptical of the idea at first,” Ni recalls. “I thought it was not a high-performance material. But we tried the clearer bubble wrap with bigger bubbles for more air trapping effect, and it turns out, it works. Now because of this bubble wrap, we don’t need mirrors to concentrate the sun.”

The bubble wrap, combined with the selective absorber, kept heat from escaping the surface of the sponge.

Read more at:


About marypmadigan

Writer/photographer (profession), foreign policy wonk (hobby).
This entry was posted in Art and Science and tagged , , . Bookmark the permalink.